viernes, 13 de noviembre de 2015

ALBERT EISTAIN

su biografia








Albert Einstein nacio en Imperio alemán14 de marzo de 1879-PrincetonEstados Unidos18 de abril de 1955) fue unfísico alemán de origen judío, nacionalizado después suizo yestadounidense. Es considerado como el científico más conocido y popular del siglo XX.1 2
En 1905, cuando era un joven físico desconocido, empleado en la Oficina de Patentes de Berna, publicó su teoría de la relatividad especial. En ella incorporó, en un marco teórico simple fundamentado en postulados físicos sencillos, conceptos y fenómenos estudiados antes por Henri Poincaré y por hendrik lorentz. Como una consecuencia lógica de esta teoría, dedujo la ecuación de la física más conocida a nivel popular: la equivalencia masa-energía, E=mc². Ese año publicó otros trabajos que sentarían bases para la fisica estadistica y la mecanica cuantica.
En 1915 presentó lateoria de la relativida general, en la que reformuló por completo el concepto de gravedad. Una de las consecuencias fue el surgimiento del estudio científico del origen y la evolución del universo por la rama de la física denominada cosmologia. En 1919, cuando las observaciones británicas de un eclipse solar confirmaron sus predicciones acerca de la curvatura de la luz, fue idolatrado por la prensa. Einstein se convirtió en un icono popular de la ciencia mundialmente famoso, un privilegio al alcance de muy pocos científicos.

sus aportes a la fisica:


La teoría de la relatividad, desarrollada fundamentalmente por Albert Einstein, pretendía originariamente explicar ciertas anomalías en el concepto de movimiento relativo, pero en su evolución se ha convertido en una de las teorías más importantes en las ciencias físicas y ha sido la base para que los físicos demostraran la unidad esencial de la materia y la energía, el espacio y el tiempo, y la equivalencia entre las fuerzas de la gravitación y los efectos de la aceleración de un sistema.

Albert Einstein
La teoría de la relatividad, tal como la expuso Einstein, tuvo dos formulaciones diferentes. La primera es la que corresponde a dos trabajos publicados en 1905 en los Annalen der Physik. Es conocida como la Teoría de la relatividad especial y se ocupa de sistemas que se mueven uno respecto del otro con velocidad constante (pudiendo ser incluso igual a cero). La segunda, llamada Teoría de la relatividad general (así se titula la obra de 1916 en que la formuló), se ocupa de sistemas que se mueven a velocidad variable.
Teoría de la relatividad especial
Los postulados de la relatividad especial son dos. El primero afirma que todo movimiento es relativo a cualquier otra cosa, y por lo tanto el éter, que se había considerado durante todo el siglo XIX como medio propagador de la luz y como la única cosa absolutamente firme del universo, con movimiento absoluto y no determinable, quedaba fuera de lugar en la física, puesto que ya no se necesitaba de semejante medio (cuya existencia efectiva, además, no había podido determinarse por ningún experimento).
El segundo postulado afirma que la velocidad de la luz es siempre constante con respecto a cualquier observador. De sus premisas teóricas obtuvo una serie de ecuaciones que tuvieron consecuencias importantes e incluso algunas desconcertantes, como el aumento de la masa con la velocidad. Uno de sus resultados más importantes fue la equivalencia entre masa y energía, según la conocida fórmula E = mc², en la que c es la velocidad de la luz y E representa la energía obtenible por un cuerpo de masa m cuando toda su masa se convierte en energía.

Einstein en el laboratorio de Pieter Zeeman (Ámsterdam, c. 1920)
Dicha equivalencia entre masa y energía fue demostrada en el laboratorio en el año 1932, y dio lugar a impresionantes aplicaciones concretas en el campo de la física: tanto la fisión nuclear como la fusión termonuclear son procesos en los que una parte de la masa de los átomos se transforma en energía. Los aceleradores de partículas, en los que se obtiene un incremento de masa, son una prueba experimental clarísima de la teoría de la relatividad especial.
La teoría también establece que en un sistema en movimiento con respecto a un observador se verifica una dilatación del tiempo; dicho de otro modo, el tiempo transcurre más despacio en el sistema en movimiento. Esto se ilustra claramente con la famosa paradoja de los gemelos: "imaginemos a dos gemelos de veinte años, y que uno permaneciera en la Tierra y el otro partiera en una astronave, tan veloz como la luz, hacia una meta distante treinta años luz de la Tierra; al volver la astronave, para el gemelo que se quedó en la Tierra habrían pasado sesenta años; en cambio, para el otro, sólo unos pocos días".
Teoría de la relatividad general
La teoría de la relatividad general se refiere al caso de movimientos que se producen con velocidad variable y tiene como postulado fundamental el principio de equivalencia, según el cual los efectos producidos por un campo gravitacional equivalen a los producidos por el movimiento acelerado.
La revolucionaria hipótesis formulada por Einstein fue provocada por el hecho de que la teoría de la relatividad especial, basada en el principio de la constancia de la velocidad de la luz sea cual sea el movimiento del sistema de referencia en el que se mide (tal y como se demostró en el experimento de Michelson y Morley), no concuerda con la teoría de la gravitación newtoniana: si la fuerza con que dos cuerpos se atraen depende de la distancia entre ellos, al moverse uno tendría que cambiar al instante la fuerza sentida por el otro, es decir, la interacción tendría una velocidad de propagación infinita, violando la teoría especial de la relatividad, que señala que nada puede superar la velocidad de la luz.
Tras varios intentos fallidos de acomodar la interacción gravitatoria con la relatividad, Einstein sugirió que la gravedad no es una fuerza como las otras, sino que es una consecuencia de que el espacio-tiempo se encuentra deformado por la presencia de masa (o energía, que es lo mismo). Entonces, cuerpos como la tierra no se mueven en órbitas cerradas porque haya una fuerza llamada gravedad, sino que se mueven en lo más parecido a una línea recta, pero en un espacio-tiempo que se encuentra deformado por la presencia del Sol.

Einstein en su estudio (c. 1925)
Los cálculos de la relatividad general se realizan en un espacio-tiempo de cuatro dimensiones, tres espaciales y una temporal, adoptado ya en la teoría de la relatividad restringida al tener que abandonar el concepto de simultaneidad. Sin embargo, a diferencia del espacio de Minkowski y debido al campo gravitatorio, este universo no es euclidiano. Así, la distancia que separa dos puntos contiguos del espacio-tiempo en este universo es más complejo que en el espacio de Minkowski.
Con esta teoría se obtienen órbitas planetarias muy similares a las que se obtienen con la mecánica de Newton. Uno de los puntos de discrepancia entre ambas, la anormalmente alargada órbita del planeta Mercurio, que presenta un efecto de rotación del eje mayor de la elipse (aproximadamente un grado cada diez mil años), había sido observado experimentalmente algunos años antes de enunciarse la teoría de la relatividad, y no podía ser explicado con las leyes de Newton. La órbita descrita, sin embargo, cumplía las predicciones relativistas, sirviendo así de confirmación experimental de la teoría de Einstein.
Un efecto que corroboró tempranamente la teoría de la relatividad general es la deflexión que sufren los rayos de luz en presencia de campos gravitatorios. Los rayos luminosos, al pasar de una región de un campo gravitatorio a otra, deberían sufrir un desplazamiento en su longitud de onda (el desplazamiento gravitacional al rojo o desplazamiento de Einstein), lo que fue comprobado midiendo el desplazamiento aparente de una estrella, con respecto a un grupo de estrellas tomadas como referencia, cuando los rayos luminosos provenientes de ella rozaban el Sol.



En 1907 Albert Einstein llegó a la conclusión de que a su teoría de la relatividad especial le faltaba algo que no estaba de acuerdo con la realidad que vivimos. Es por eso que tuvo que ir un poco más allá y realizar una nueva teoría: la teoría de la relatividad general.

La teoria de la relatividad especial, llamada también relatividad particular orestringida, es una teoría que describe bien el movimiento de los cuerpos, pero solo a velocidades constantes, y en un espacio plano, de tres dimensionesespaciales y una temporal.
En el universo la gravedad acelera a todos los cuerpos, poniéndolos enmovimiento. Ademas, la gravedad es una fuerza universal, en el sentido de encontrarse en todo lugar. Entonces, dada esta realidad, podemos afirmar que nada está en reposo: todo en el universo se mueve y con aceleración. Einstein se dio cuenta entonces de que era necesario generalizar su teoría.

einstain y su invento el teletografo:
Cuando Einstein recibió el Premio Nobel en 1921, fue su explicación sobre el efecto fotoeléctrico y no su artículo sobre la relatividad especial lo que se citaría.
Quizá fuera debido en parte a la negativa de los científicos a aceptar la teoría especial después de tan poco tiempo. Aún así, su análisis del efecto fotoeléctrico en su artículo “Heurística de la generación y conversión de la luz” es de por sí un trabajo revolucionario.
Al explicar un efecto que contradecía las creencias de su tiempo sobre la naturaleza de la luz, Einstein contribuyó a la visión global de hoy en día sobre el mundo subatómico, que no sólo el hombre de la calle, sino incluso los propios físicos tienen problemas en imaginar.


fotoelectrico:






sus emotivas frases:






aqui un pequeño video de albert einstain:


este fisico tiene unas frases  motivadoras , pues pienso que  es un gran ser humano que exisitio hace mucho tiempo y que dejo grandes enseñanzas y inventos a la humanidad
la frase mas linda : nunca consideres el estudio como una obligacion, si no como muna oportunidad para penetrar en el bello y maravilloso mundo del saber

No hay comentarios:

Publicar un comentario